Focusing on an Electrowetting Lens

Caty Fairclough | August 31, 2015

Adjusting the focal length of a camera lens allows you to change your angle of view. Miniature lenses can achieve this change by using a method called electrowetting. Electrowetting involves changing the balance of forces at a contact point of a free surface and a solid by applying a voltage. However, focus is not obtained immediately due to oscillations in the free surface. Here, we investigate the optimal viscosity for critically damping the free surface when a voltage is applied.


Bridget Cunningham | August 26, 2015

Polymerase chain reaction tests have many applications within medical and biological research. In the past, these tests have been performed within a laboratory setting due to their high power requirements and the slow speed at which results are delivered. Researchers at the University of California, Berkeley have developed a new LED-based polymerase chain reaction system that, with its simplicity and speed, could be used in point-of-care testing.

Eric Favre | July 7, 2015

Previously on the blog, we introduced you to the tears of wine phenomenon and its cause — the Marangoni effect. This effect results from a gradient of surface tension at the interface between two phases. In situations where a surface gradient is temperature dependent, the Marangoni effect is referred to as Marangoni convection. Here, we will demonstrate how to analyze Marangoni convection in COMSOL Multiphysics and easily separate effects, such as gravity, in your simulations.

Brianne Costa | June 17, 2015

The semiconductor industry uses ion implanters to implant dopants into wafers. To optimize the design of these devices, engineers need to quickly and easily test a wide range of parameters. Simulation apps help streamline the design process of ion implanters by sharing the capabilities of a simple and fully customizable interface with colleagues who don’t have a simulation background. Here, we introduce you to our Ion Implanter Evaluator demo app.

Brianne Costa | May 25, 2015

Chemical vapor deposition (CVD) is popular in the semiconductor industry for its ability to produce high-quality, pure, and extremely strong materials. Ultra-high vacuum CVD (UHV/CVD) requires complex equipment and very high temperatures. To increase efficiency and control costs, engineers can simulate this complex process. Here, we use the growth of silicon wafers as an example.


Bridget Cunningham | April 27, 2015

Over the years, the development of sensor technology has enabled more accurate measurements of fluid flow. One such device is the thermal flow sensor. This instrument is valued for its simple design and implementation as well as its high degree of accuracy. Using COMSOL Multiphysics, a team of researchers from the University of Cambridge designed a 3D model to analyze the dynamics of a thermal flow sensor, a component of a flow meter.


Caty Fairclough | July 17, 2015

Microfluidic systems often rely on valveless pumps, as they are both gentle on the biological material and low in the risk of clogging. However, by design, this type of pump is not suitable for viscous fluids and systems with small length scales or low flow rates. To overcome this limitation, you can introduce a micropump mechanism that converts oscillatory fluid motion into a unidirectional net flow.

Ed Fontes | July 6, 2015

Since we released version 5.0 of the COMSOL Multiphysics® software, you have the ability to create simulation apps — either starting from scratch or with a demo app from the Application Library. Today, we’ll introduce you to an app that can be used for understanding and optimizing mixer design and operation for a given fluid. The exemplified application models and simulates stirred tank mixers, which are used for reactors in the fine chemical, pharmaceutical, food, and consumer products industries.


Peter Lyu | June 16, 2015

In fluid flow simulations, it is often important to evaluate the forces that the fluid exerts onto the body — for example, lift and drag forces on an airfoil or a car. Engineers can use these body forces to quantify the efficiency and aerodynamic performance of designs. Today, we will discuss different ways to compute lift and drag in COMSOL Multiphysics.


Brianne Costa | May 11, 2015

Microfluidic biochips have a variety of applications and are valued for their low cost, fast response time, and high efficiency. In the paper “Design and Simulation of High-Throughput Microfluidic Droplet Dispenser for Lab-on-a-Chip Applications”, which was presented at the COMSOL Conference 2014 Boston, researchers designed a microfluidic biochip with an analog-to-digital converter. They used COMSOL Multiphysics software to understand the mechanism of the device and verify its function.


Fabrice Schlegel | April 7, 2015

Today, we compare the Boussinesq approximation to the full Navier-Stokes equations for a natural convection problem. We also show you how to implement the Boussinesq approximation in COMSOL Multiphysics software and discuss potential benefits of doing so.

1 2 3 4 5 12