Simulating Natural Convection in Air with COMSOL Multiphysics®

Bridget Paulus February 7, 2018

Natural convection is a type of heat transport found in engineering applications of all sizes. For instance, this phenomenon helps maintain a reasonable temperature in both small electronic devices and large buildings. No matter the application area, design engineers can use the COMSOL Multiphysics® software to model natural convection in air for both 2D and 3D geometries.

Ler Mais

Claire Bost January 24, 2018

Computing laminar and turbulent moisture flows in air is both flexible and user friendly with the Moisture Flow multiphysics interfaces and coupling in the COMSOL Multiphysics® software. Available as of version 5.3a, this comprehensive set of functionality can be used to model coupled heat and moisture transport in air and building materials. Let’s learn how the Moisture Flow interface complements existing functionality, while highlighting its benefits.

Ler Mais

Caty Fairclough January 18, 2018

While our daily lives are clearly affected by the “flashier” parts of the water cycle (rain, snow, etc.), other parts of the cycle — such as the groundwater moving beneath our feet — are just as important. We use groundwater for irrigation and drinking water, and it affects natural processes and habitats. When studying groundwater, it’s often important to understand the movement of various solutes through the water. To predict solute transport, scientists can use multiphysics simulation.

Ler Mais

Categorias

Chandan Kumar January 4, 2018

A sphere slightly lighter than water is dropped into a small liquid-filled beaker. How do you model the resulting shape of the water surface and the motion of the sphere as it floats on the surface? In this blog post, we demonstrate how to model this system in the COMSOL Multiphysics® software. Although we are considering the case of a small sphere, the technique discussed here can be applied to other larger shapes as well.

Ler Mais

Categorias

Phillip Oberdorfer December 15, 2017

The physics behind filling a water balloon seem simple at first glance, but involve a rather complex interplay of fluid flow and a nonlinear hyperelastic material. Fortunately, it is easy to set up and solve this type of model in the COMSOL Multiphysics® software. Let’s see how…

Ler Mais

Brianne Costa November 24, 2017

Magnetic flow meters are a noninvasive option for measuring blood flow. However, when patients move, displaced blood vessels can affect the sensitivity of the flow meter. Researchers from ABB Corporate Research used multiphysics modeling to study how the displacement of blood vessels in a moving patient impacts the performance of a magnetic flow meter.

Ler Mais

Brianne Costa November 22, 2017

There is a lot we know about the brain, and a lot we don’t. Optogenetics is a relatively new area of study in which light is used to stimulate brain activity and study neurological behavior. Stimulating neurons with light is more precise than electrical stimulation — and safer. Researchers from Massachusetts Institute of Technology (MIT) used simulation to design an optical probe that can be implanted into the brain to stimulate nerve impulses.

Ler Mais

Categorias

Caty Fairclough November 10, 2017

Skyscrapers, highway bridges, and other heavy manmade structures often use drilled shafts. Despite their widespread application, these shafts suffer from anomalies due to suboptimal designs and issues with the flow of concrete. To better understand such problems and improve the concreting process for drilled shafts, researchers used the COMSOL Multiphysics® software. Here, we take a peek at their preliminary research and findings.

Ler Mais

Categorias

Fanny Littmarck October 26, 2017

Important question: If you pour hot coffee into a vacuum flask, how long will it stay warm? There are two different modeling approaches for studying this scenario, but the more accurate method is also more computationally expensive. Let’s see what they are and when they are appropriate — and hopefully find an answer to the question.

Ler Mais

Caty Fairclough September 29, 2017

Fusion energy is 30 years away — and always will be. The joke certainly rings true for inertial fusion energy (IFE), which must overcome a number of obstacles before it can become a reality. For example, the current methods for creating IFE targets cannot meet the predicted demand and cost requirements. To solve this problem, researchers designed a new microfluidics method that could address these production bottleneck issues while complying with the strict geometrical requirements of IFE target design.

Ler Mais

Andrew Young September 27, 2017

When simulating flow in porous media, it can be efficient to simplify the geometric complexity of the real porous material using a homogenized macroscale approach. But what if we don’t know what the effective macroscopic properties are? Here, we look at how to extract the macroscopic flow properties of porosity and permeability from a fully resolved microscale submodel.

Ler Mais

Categorias


Categorias


Tags

1 2 3 4 19