Designing Heating Circuits with Multiphysics Simulation

Bridget Paulus February 12, 2019

Heating circuits can be found in airplanes, electronic message boards, medical storage devices, and much more. Like many other heating elements, these circuits work through resistive heating, a multiphysics process involving electric currents, heat transfer, and structural deformation. To account for these phenomena and other key design factors, engineers can create virtual prototypes of heating circuits using the COMSOL Multiphysics® software.

Ler Mais

Bridget Paulus January 28, 2019

Cables provide power to sky-high airplanes, underground mines, and offshore wind farms. Depending on the use case, cables can have vastly different shapes, sizes, and environments — all of which affect their performance. In his keynote talk at the COMSOL Conference 2018 Lausanne, Adrien Charmetant of Nexans explained how multiphysics modeling is used to optimize cable designs. Below, you can find a summary and video of his presentation.

Ler Mais

Emily Ediger December 25, 2018

Optimizing the food dehydration process can be tricky, but it is helpful and necessary for areas with food shortages. In his keynote presentation at the COMSOL Conference 2018 Lausanne, Thijs Defraeye of Empa discussed how his team uses multiscale modeling to understand the drying process for soft cellular foods. If you missed his talk, you can watch a video recording of the presentation and read a summary below.

Ler Mais

Thomas Forrister December 5, 2018

Heart failure is a global health concern, affecting millions of people and keeping them from their everyday lives. But what if there was a device that could keep patients’ hearts pumping and even improve their quality of life? In his keynote presentation at the COMSOL Conference 2018 Boston, Freddy Hansen from Abbott Laboratories discussed a heart pump that could do just that. If you missed his talk, you can watch a recording of the video and read a summary below.

Ler Mais

Walter Frei October 22, 2018

One of the core strengths of the COMSOL Multiphysics® software is the ability to easily define loads and constraints that move over time. There are actually several different ways in which this can be done, all within the core functionality of the software. In today’s blog post, we will guide you through three of these approaches.

Ler Mais

Walter Frei April 17, 2018

In applications such as power transfer and consumer electronics, it may be critical to model electromagnetic heating of materials that are nonlinear in temperature; that is, the material’s electrical conductivity and thermal conductivity vary with temperature. When modeling these nonlinearities, even an experienced analyst can sometimes get quite unexpected results due to the combination of the nonlinear material properties, boundary conditions, and geometry. Let’s find out why this is in terms of a very simple example.

Ler Mais

Caty Fairclough January 31, 2018

Due to their flexible fuel choice options, immovable parts, and potential for efficient power generation, thermophotovoltaic (TPV) systems have a wide variety of possible applications. For instance, these systems could help provide portable energy, advance space travel, and power automobiles. However, engineers must first improve the efficiency of TPV systems as well as reduce system costs and device temperatures. To accomplish these goals, engineers can use simulation to analyze and optimize their TPV designs.

Ler Mais

Brianne Christopher December 29, 2017

Want a roadmap to modeling cables? We have a six-part tutorial series for you. The Cable Tutorial Series shows how to model an industrial-scale cable in the COMSOL Multiphysics® software and add-on AC/DC Module, and also serves as an introduction to modeling electromagnetic phenomena in general. The numerical model is based on standard cable designs and validated by reported figures. Keep reading for a sneak peek of what you’ll learn when you roll up your sleeves and start the series.

Ler Mais

Walter Frei November 30, 2017

To fillet or not to fillet, that is the question (that can bedevil the multiphysics analyst). When building finite element models, sharp edges can lead to local singularities and fields that are nonconvergent with mesh refinement. Rounding off these sharp edges by adding a fillet avoids this singularity. As it turns out, in many multiphysics models, these sharp edges and the resultant singularities do not necessarily negatively affect the results. Let’s find out more.

Ler Mais

Caty Fairclough September 21, 2017

Have you ever plugged one too many devices into an electrical circuit? This can overload the circuit and damage its components. To avoid this issue, many homes have devices like electric switch circuit breakers to interrupt the current when a critical current is reached. Other types of circuit breakers are used to prevent issues in high-voltage situations, like citywide power lines. In this blog post, we discuss using simulation to study a class of heavy-duty circuit breakers: magnetic power switches.

Ler Mais

Bridget Cunningham July 17, 2017

On the morning of March 22, 2006, NASA launched their Space Technology 5 mission. For about three months, miniaturized satellites explored Earth’s magnetic fields collecting high-quality measurements. Beyond gathering scientific data, the mission represents a turning point. Instead of large traditional satellite missions, miniaturized technology is taking precedence in space exploration. And within these systems, MEMS technology could serve as a means of active thermal control. Further improvements are already taking shape with the help of multiphysics simulation.

Ler Mais



1 2 3