Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Flow of Dry Foam in a Pipe

M. Divakaran[1], S. K. Gupta[1]
[1]Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

Due to the coupling of foam flow with foam generation step, the earlier studies on foam flow have not led to consistent results. An increase in flow rate to obtain ?P vs. Q data changes the foam under investigation itself. The controlled experiments carried out earlier in our group show that ?P increases with flow rate as Q^2/3, a weaker dependence than that known for laminar flow or plug flow ...

Modelling of the Wool Textile Finishing Processes

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

Within wool textile industries, a very important role is played by the so-called finishing processes, in which the textile substrate undergoes steam treatments to achieve the desired level of stabilisation and appearance. Process parameters, namely temperature and moisture content, are known only at the beginning of the process but not in the textile material being treated, where the actual ...

Computational Building Physics using COMSOL Multiphysics

A.W.M. van Schijndel
Technische Universiteit Eindhoven

This paper presents a first modeling guide for the modeling and simulation of Heat, Air & Moisture (HAM) transport of building constructions using COMSOL with Matlab. The aim of the paper is to provide a relative easy access to HAM modeling and simulation for people who have only minor experience with Matlab and COMSOL. --------------------------------- Keynote speaker's ...

3D Dynamic Simulation of a Metal Hydride-Based Hydrogen  Storage Tank

A. Freni, and F. Cipiti
CNR- Institute for Advanced Energy Technologies “Nicola Giordano”, Messina, Italy

In this paper, a 3D dynamic simulation for a portion of a metal hydride-based (LaNi5) hydrogen storage tank is presented. The model is based on heat and mass balances and considers coupled heat and mass transfer resistance through a non-uniform pressure and temperature sorbent bed. The governing equations were implemented and solved using the COMSOL Multiphysics software package. The simulation ...

Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene

M. Beckmann-Kluge, F. Ferrero, V. Schröder, A. Acikalin, and J. Steinbach
Federal Institute for Materials Research and Testing, Technical University, Berlin, Germany

Tetrafluoroethylene (TFE) is a gas widely employed in industry, which can under specific circumstances experience an exothermic dimerization to octafluorocyclobutane. If the heat generated by this reaction cannot be dissipated to the surroundings, the temperature inside the reactor will continue rising, leading to conditions where TFE can decompose in tetrafluoromethane and carbon black. This ...

Extraction of Phenolic Compound from Grape Fruit. A Comparison Between a 3D FEM Model and Experimental Results

E. Madieta, I. Zouid, R. Siret, and F. Jourjon
Laboratoire GRAPPE, ESA, Angers, France

Fresh fruits and vegetables are gaining importance in the human diet because they contain many beneficial compounds. Among these compounds, phenols are of vital importance due to their antioxidant properties. It is well evident from previous researches that the skin of red grapes is considered a good source of phenols. The aim of this work is to simulate the extraction procedure of phenols in ...

3D Hydrogeological Modeling - From a Theoretical 2D Model through a Medium Scale Application up to a Challenge: Simulations at Basin Scale

E. Cavalli[1], R. Simonetti[1], M. Gorla[1], N. Ceresa[1]
[1]CAP Holding, Milan, Italy

An alluvial aquifer system has probably conceived as a numerical modeling hell. We have chosen COMSOL Multiphysics® for two reasons: 1) FEM methods allow to use complex geometries; 2) multiphysics simulation permits to run a single model with all phenomena. We built a section with these physics: a) Darcy's law, b) Richards' equation, c) ALE to show surface deformation, d) Hydrogeologcal ...

Simulation of roll coating process using FEMLAB

Manski, S.S.1, Mmbaga, J.P.1, Hayes, R.E.1, Bertrand, F.H.2, Tanguy, P.A.2
1 Department of Chemical and Materials Engineering, University of Alberta, Edmonton AB Canada
2 URPEI, Department of Chemical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada

Paper coating operations involve a number of coupled multiphase interactions. The use of FEMLAB to study these coupled phenomena using a level set method is reported. Several problems, including the penetration of fluid into a porous media, flow split meniscus dynamics and entrapment of air bubbles during coating process are explored using a level set implementation. Fluid penetration from a ...

Modeling and Simulation of a Thermal Swing Adsorption Process for CO2 Capture and Recovery

M. Lei, C. Vallieres, G. Grevillot, and M.A. Latifi
LRGP - CNRS - ENSIC, Nancy, France

The present study deals with a twodimensional modeling and simulation of a thermal swing adsorption (TSA) process used for the capture of CO2 from CO2/N2 mixture. The models are described by partial differential equations (PDEs) including conservation equations, models for equation of state, equilibrium, thermodynamic and transport properties. The resulting models involve different unknown ...

Non-Isothermal Kinetics of Water Adsorption in Compact Adsorbent Layers on a Metal Support

G. Füldner, and L. Schnabel
Fraunhofer Institute of Solar Energy Systems, Freiburg, Germany

Water adsorption in highly porous materials can be used in heat transformation processes for the efficient use of energy in heat and cold production. One technology for such a thermal heat transformation is the use of water adsorption in highly porous adsorbents like zeolite. To optimize the power density of compact thin layer adsorbent beds, a one-dimensional model of the coupled heat and mass ...

Quick Search