Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Multiphysics Software Applications in Reverse Engineering

W. Wang[1], K. Genc[2]
[1]University of Massachusetts, Lowell, MA, USA
[2]Simpleware, Exeter, United Kingdom

During the past decade reverse engineering has become a common and acceptable practice utilized by many aftermarket suppliers, and even original equipment manufacturers (OEM). This presentation focuses on the applications of multiphysics software such as COMSOL and Simpleware® in reinventing the design details and manufacturing processes of an existing part in the absence of the original design ...

Modeling the Bacterial Clearance in Capillary Network Using Coupled Stochastic-Differential and Navier-Stokes Equations

A. Atalla[1], and A. Jeremic[1]
[1]McMaster University, Hamilton, Ontario, Canada

The capillary network is a complex-interconnected structure. A single blood cell traveling from the arteriole to a venule via a capillary bed passes through, on average, 40−100 capillary segments. The cardiovascular systems responsible of delivering blood to the tissue under sufficient pressure to exchange materials. This is a two way process, at which nutrients, Oxygen, and other ...

Linear LS Parameter Estimation of Nonlinear Distribute Finite Element Models

E. Sparacino[1], D. Madeo[1], and C. Mocenni[1]

[1]Dipartimento di Ingegneria dell’Informazione, Università di Siena, Siena, Italy

This work concerns the development of a new direct parameter identification procedure for a class of nonlinear reaction- diffusion equations. We assume to know the model equations with the exception of a set of constant parameters, such as diffusivity or reaction term parameters. Using the Finite Element Method we are able to transform the original partial differential equation into a set of ...

Conducting Finite Element Convergence Studies Using COMSOL 4.0

M.K. Gobbert, and D.W. Trott
University of Maryland, Baltimore, MD, USA

We will show how to carry out convergence studies of the FEM error on a sequence of progressively finer meshes in COMSOL Multiphysics on the example of Lagrange elements of varying polynomial degrees, which will also bring out the benefit of using higher order elements. The sample studies will focus on Lagrange elements of degree 1 through 5. For these elements, the convergence order of the ...

Coupling COMSOL’s Subsurface Flow Module with Environmental Geochemistry in PHREEQC

L. Wissmeier[1], and D. A.Barry[2]
[1]GIT HydroS Consult GmbH, Freiburg, Germany
[2]EPFL, Lausanne, Switzerland

We present a software tool for simulations of subsurface flow and solute transport in combination with comprehensive intra-phase and inter-phase geochemistry. The software uses PHREEQC as a reaction engine to COMSOL Multiphysics®. The coupling with PHREEQC gives major advantages over COMSOL’s built-in reaction capabilities, i.e., the soil solution is speciated from its element composition ...

Finite Element Convergence and Speed-Up Studies Using COMSOL Multiphysics and LiveLink™ for MATLAB® with Large Assembly Models

H. Pourzand[1], A.H. Aziz[1], A. Singh[1]
[1]Pennsylvania State University, State College, PA, USA

COMSOL Multiphysics along with its LiveLink™ for MATLAB® is used to investigate the needed number of elements and the required order of Lagrangean p element for a number of different simulation models. For this task, convergence study, speed up testing and interactive meshing is performed on a large assembly model which is also imported using the LiveLink™ for SolidWorks®. As a test bench, ...

FEM Based Modeling In COMSOL Multiphysics and Design Of Control Of Distributed Parameter Systems

C. Belavý, and G. Hulkó, and K. Ondrejkovic, and D. Šišmišová
Slovak University of Technology in Bratislava, Bratislava, Slovakia

This paper presents a finite element method based modeling and design of control for distributed parameter systems. First, models of distributed parameter systems in the form of lumped-input/distributed-output systems and structure of control loop are introduced. Next, modeling of temperature fields of the casting die as distributed parameter systems in preheating process is performed in COMSOL ...

Using COMSOL for Smart Determination of Material Properties Using Inverse Modeling Techniques

J. van Schijndel, S. Uittenbosch, and T. Thomassen
Eindhoven University of Technology
Eindhoven, Netherlands

The paper presents the development of a method that determines building material and surface properties using relative simple and low-budget experiments, The method comprehends an optimal design of an experimental set up for smart determination of heat and moisture properties using both normal and inverse modeling techniques. It is concluded that the suggested methodology of the inverse ...

FEMLAB modules for bioengineering education

Butler, P.J.1, Ferko, M.C.2
1 Department of Bioengineering, Penn State University
2 Stryker Orthopedics Corporation

As biologists uncover the structural and functional complexity of living organisms, it is increasingly clear that mathematical models are needed to synthesize experimental data and predict biological responses to external stimuli. Bioengineers are well-suited to develop such models and to add mechanics, fluid flow and other physical cues to the understanding of biological structure and ...

Development of an Interlinked Curriculum Component Module for Microchemical Process Systems Components Using COMSOL Multiphysics

A. Mokal, and P. Mills

Department of Chemical and Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

COMSOL Multiphysics provides a powerful numerical platform where various models for microchemical process technology components can be readily created for both education and research. This modeling tool allows chemical engineering students to focus on understanding the effects of various microchemical system component design and operational parameters versus coding and debugging of the numerical ...

Quick Search