Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

COMSOL Multiphysics Simulations of Microfluidic Systems for Biomedical Applications

M. Dimaki, J. Moresco Lange, P. Vazquez, P. Shah, F. Okkels, and W. Svendsen
Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark

The need for fast, easy and cost-effective analysis of blood samples as well as our understanding of the functionality of cells and neurons are two rather pressing issues in the modern world. Both of these can be addressed by functional lab-on-a-chip systems, which have been designed and optimized for specific analyses. This paper deals with the design of several different systems for cell ...

Coupled PDEs with Initial Solution from Data in COMSOL Multiphysics®

M. K. Gobbert[1], X. Huang[1], S. Khuvis[1], S. Askarian[1], B. E. Peercy[1]
[1]University of Maryland - Baltimore County, Baltimore, MD, USA

This paper presents information on techniques needed in COMSOL Multiphysics® to enable computational studies of coupled systems of PDEs for time-dependent non-linear problems. Furthermore, we demonstrate how to use data files as input for initial conditions. To illustrate the techniques, we consider a system of two time-dependent non-linear PDEs from mathematical biology that couples an ...

A Multiphase Porous Medium Transport Model with Distributed Sublimation Front to Simulate Vacuum Freeze Drying

A. Warning[1], J. M. R. Arquiza[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

A continuum, porous medium formulation with non-equilibrium sublimation was developed and validated for freeze drying without and with uniform microwave volumetric heating. The model incorporates the effect of Knudsen flow at low pressure and low permeability freeze drying. The distributed, non-equilibrium sublimation demonstrated that the sublimation front is a sharp boundary for high ice ...

Design and Simulation of Unimorph Piezoelectric Energy Harvesting System

E. Varadarajan[1], M. Bhanusri[2],
[1]Research and Innovation Centre (RIC), IITM Research Park, Chennai, Tamil Nadu, India
[2]Department of Physics, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, India

In this paper we made an attempt to maximize the power output in the different piezoelectric materials in a unimorph cantilever beam configuration. In this research, a macro scale unimorph piezoelectric power generator prototypes consists of an active piezoelectric layer, stainless steel substrate and titanium proof mass was designed for frequencies 60 Hz - 200 Hz. An analytical model of a micro ...

Use of COMSOL Multiphysics in Modelling of Galvanic Corrosion

Dr. K.B. Deshpande
Senior Researcher, General Motors R&D, India Science Lab, Bangalore, Karnataka, India

Kiran received his M. S. from Indian Institute of Science, Bangalore and his Ph.D. from University of Sheffield, both in Chemical Engineering. He is currently working as a Senior Researcher at the General Motors R&D, India Science Lab, Bangalore where he is involved in modeling of galvanic corrosion and its mitigation strategies. Prior to joining GM R&D, he was Knowledge Transfer Program ...

Implementation of Structural Topology Optimization in COMSOL

B. Lemke, Z. Liu, and J.G. Korvink
IMTEK, Lehrstuhl Simulation, Freiburg im Breisgau

Structural topology optimization is an important research topic to improve the performance of the mechanical design. We show how to use COMSOL as an integration environment to implement structural topology optimization using the density method and the level set method.

Simulation of Optical Properties of the Si/SiO2/Al Interface  at the Rear of Industrially Fabricated Si Solar Cells

Y. Yang[1], and P. Altermatt[1,2]
[1]Institute for Solar Energy Research Hamelin (ISFH), Emmerthal, Germany
[2]Dep. Solar Energy Research, Inst. Solid-State Physics, Leibniz University of Hanover, Germany

The specular and diffuse reflection properties of sunlight at the rear surface of silicon solar cells with various degrees of roughness are computed by solving the Maxwell and material equations in two dimensions, using the COMSOL RF Module. The model is tested on planar Si/SiO2/air interfaces and planar Si/SiO2/Al interfaces. The simulations show that for wavelengths of 800 nm, (i) maximum ...

Design and Stress Analysis of a General Aviation Aircraft Wing

G. Atmeh[1], F. Darwish[1], and Z. Hasan[2]
[1]Jordan University of Science and Technology, Irbid, Jordan
[2]Texas A&M University, College Station, TX, USA

The present study focuses on the design and analysis of a single-engine, propeller-driven general aviation airplane. Initial weight estimation based on the initial sketch and the design mission profile is conducted. The estimated weight and other design parameters are used to define the external geometry of the fuselage, wing and tail. Conic lofting is utilized to render a layout of the design ...

Dynamics of Rotors on Hydrodynamic Bearings

R. Eling[1]
[1]Mitsubishi Turbocharger & Engine Europe, Almere, The Netherlands

This study presents a rotordynamic analysis of a rotor on hydrodynamic bearings using COMSOL Multiphysics®. In this paper, the complexity of the model is gradually increased. Starting point of the analysis is the modal analysis of the rotor in free-free conditions. A Reynolds model is set up to predict the film pressure distribution under shaft loading. Due to the cross coupling terms of the ...

Numerical Computation of Two-Phase Flow in Porous Media

D. Droste[1], F. Lindner[1], C. Mundt[1], M. Pfitzner[1]
[1]Universität der Bundeswehr, Munich, Bavaria, Germany

In this study we investigate the heat and mass transfer in a porous media with phase change. The liquid fluid is injected from one side and heated from the other side, where it leaves the porous material in a gaseous state. Dominant forces are capillary interactions and two-phase heat conduction. To model the process we use a two-phase mixture model on a macroscopic scale. This model is ...

Quick Search