Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Numerical Analysis of the Impact of Geometric Shape Patterns on the Performance of Miniaturized Chromatography Systems

R. Winz[1], E. von Lieres[2], and W. Wiechert[1]
[1]Department of Simulation, University of Siegen, Siegen, Germany
[2]Institute of Biotechnology, Research Centre Jülich, Siegen, Germany

We have implemented a two dimensional chromatography model for the analysis and optimization of structured micro pillar arrays. Dynamic surface interaction of solved molecules is taken into account by the kinetic Langmuir model. Variations of the pillar array geometry lead to deviations in the outlet concentration profiles. These deviations cannot be described by the one dimensional models that ...

Effect of Mass Adsorption on a Resonant NEMS

J. J. Ruz Martinez
Instituto de Microelectronica de Madrid
Tres Cantos
Madrid, Spain

The motion of a resonant NEMS has been widely studied for many different applications such as structural mechanics in engineering, ultra sensitive mass spectrometers or the well known Atomic Force Microscope. The study of the eigenfrequencies of such structures is very important, and nowadays there are good theoretical methods to accurately predict such eigenfrequencies. When a little mass is ...

Zone sculpting using partitioned electrokinetic injections

Narovlyansky, M.1, Squires, T.M.2, Whitesides, G.M.1
1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, U.S.A.
2 Departments of Physics and Applied Mathematics, Caltech, Pasadena, CA

In electrokinetic separations, the narrower and more homogeneous the initial sample plug, the higher the ultimate resolution of the separation. Here we describe a general and versatile method to sculpt low-dispersion, high-fidelity sample zones in microfluidic devices for high resolution electrokinetic separations. In a simple channel intersections microfabricated partitions act to reduce each ...

Electromagnetic Release Process for Flexible Electronics

G. Coryell[1][,][2]
[1]School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
[2]Chemistry Department, United States Naval Academy, Annapolis, MD, USA

Flexible electronics are temporarily affixed to a rigid carrier such as glass or silicon prior to device fabrication to facilitate robotic handling of the device, but also to allow optical lithography to stay within overlay design registration budget; without the rigid carrier, a freestanding flexible substrate such as polyimide would distort unacceptably during even minor temperature excursions ...

Computational Analysis of Evaporation in Tailored Microchannel Evaporators

S. Arslan[1], J. Brown[1]
[1]Lawrence Technological University, Southfield, MI, USA

The rapid increase in power densities of integrated circuits has induced a significant interest in new reliable and high heat flux cooling technologies. The implication of such growth is the increased need for more efficient and more compact cooling mechanisms. Promising research has been conducted in the area of MEMS cooling devices, taking advantage of the increased heat transfer ...

Novel Sensor Technology for Point of Care Diagnostics

V. Djakov
Sensor Development Director
Microvisk Technologies Ltd
UK

Dr Vladislav Djakov is the co-founder of Microvisk Technologies Ltd and the inventor of its MEMS-based Technology. Born in Belgrade, Serbia he came to UK in 1995 to pursue M.Sc. in Artificial Intelligence followed by Ph.D. in Micro-robotics. With over 14 years of extensive ‘hands-on’ expertise on a number of micro-fabrication techniques, using standard and novel materials, as well as ...

Development of laser-driven micromachines using total internal reflection

S. Maruo
Yokohama National University, Yokohama, Japan

Laser-driven micromachines using total internal reflection were developed by using two-photon microfabrication. The optical torque exerted on the micromachine was evaluated by COMSOL Multiphysics software. The laser-driven micromachines will be applied to lab-on-a-chip devices.

Flexible MEMS Actuated Display System and Modeling Optimization

G. Tortissier[1], C.-Y. Lo[2], H. Fujita[1], and H. Toshiyoshi[1,3]
[1]LIMMS/CNRS-IIS(UMI-2820), Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
[2]Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Taiwan
[3]Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan

Previous works on MEMS actuated Fabry-Perot interferometer (FPI) highlighted promising results for flexible display applications. Three primary color pixels have indeed been obtained using both photolithography and Roll-to-Roll printing process with satisfying color purity and transmittance. However both of these processes are expensive and time-consuming for preparing micropatterns. For these ...

MEMS RF Switch For CPW Circuits

G. Umesh[1], P. Bhat[2], and M.S. Bhat[2]
[1]Physics Dept., NITK Surathkal, Mangalore, Karnataka, India
[2]Dept. of E&C, NITK Surathkal, Mangalore, Karnataka, India

We have simulated a capacitive MEMS switch for application to Coplanar Waveguide (CPW) circuits using COMSOL Multiphysics. The switch configuration involves a pair of metal bridges over the CPW line designed for operation in the Ka - Band frequencies. It is shown that the operating frequency of the switch can be tuned by adjusting the gap between the two bridges. Estimation of the switch ...

Design and Simulation of Flying Microids

J. Clark, F. Li, B. Khandagale, and J.V. Clark
Purdue University, West Lafayette, IN, USA

In this paper we present the first design and simulation results of flying microids. Microids are a particular type of microrobots that have insect-like dexterity. Our initial investigation into the ability of microids to walk, run, jump, turn, carry loads, and walk upside-down was previously presented. Having the ability to fly greatly extends transportability. Although others have previously ...

Quick Search