Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Simulation of Evaporating Droplets on AFM-Cantilevers II: Confocal Microscopy and Transversal Bending

T. Haschke[1], E. Bonaccurso[2], H.J. Butt[2], F. Schönfeld[3], and W. Wiechert[1]
[1] Universität Siegen, Lehrstuhl für Simulationstechnik, Siegen
[2] Max-Planck-Institut für Polymerforschung, Mainz
[3] Institut für Mikrotechnik Mainz GmbH, Mainz

The evaporation process of microscopic drops was investigated by depositing them onto atomic force microscope (AFM) cantilevers and measuring the deflection of the cantilever in response to the presence of the drop. We could thus improve a previously presented FE simulation model by comparing the simulations of the cantilever’s transversal deflection to 3-D images of the cantilever’s ...

Optimization of the Temperature Distribution in a Chemical Microreactor using a Multi-Segment Integrated Thin Film Heater

T.R. Henriksen, S. Jensen, U. Quaade, and O. Hansen
Technical University of Denmark

COMSOL Multiphysics has been used to study the effect of different heater design parameters on the temperature distribution in a chemical microreactor. The primary objective of the simulations has been to optimize the temperature uniformity inside the reaction chamber. In the simulations, special attention has been given to how the number, positions and widths of the heater strips relate ...

Modeling and Characterization of Superconducting MEMS for Microwave Applications in Radioastronomy

N. Al Cheikh[1], P. Xavier[1], J. Duchamp[1], and K. Schuster[2]
[1]Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC), Grenoble, France
[2]Institute of Millimetrics Radio Astronomy (IRAM), Grenoble, France

Superconducting GHz electronics circuits are frequently used in Radio Astronomy instrumentation. The features of these instrumentations can be significantly improved by using tuneable capacitances, which can be realized by electrically actuated, micromechanical bridges (MEMS) made of superconducting Niobium (Nb). In order to analyze the electromechanical behavior of such devices and the intrinsic ...

Design and Analysis of Micro-tweezers with Alumina as Gripper Using COMSOL Multiphysics

V. S. Selvakumar, M. S. Gowtham, M. Saravanan, S. Suganthi, and L. Sujatha
Rajalakshmi Engineering College
Chennai, India

Micro-tweezers have been widely investigated because of their extensive applications in micro-fluidics technology, microsurgery and tissue-engineering. It has been reported that thermal actuation provides greater forces and easier control when compared to electrostatic micro actuation. In this paper, we discuss about the effects of Alumina as gripper on the operation of micro tweezers. The ...

Dimensioning simultaneous polymerase chain reactions (PCR) in capillary tubes

Berthier, J., Chatelain, F.

Polymerase chain reaction is the most usual way to amplify DNA strands for detection and biorecognition. However efficient biorecognition requires to perform many different PCRs at the same time. We present here a new concept of simultaneous PCRs in capillary tubes and more specifically the dimensioning of such a microsystem. The concept consists in performing different PCRs in annular rings ...

Mixing and Residence Time Distribution Studies in Microchannels with Floor Herringbone Structures

A. Cantu-Perez, S. Ping Kee, and A. Gavriilidis
University College London, Department of Chemical Engineering, Torrington Place, London, UK

The mixing characteristics and residence time distributions (RTDs) of a staggered herringbone microchannel have been investigated numerically by COMSOL Multiphysics and by particle tracking algorithms that incorporate diffusion via a random walk. All simulations were validated with experimental data. It was found that for low Peclet numbers the use of herringbone structures have little impact on ...

Nanofiltration Modeling Based on the Extended Nernst-Planck Equation under Different Physical Modes

J. Gozálvez-Zafrilla, and A. Santafé-Moros
Department of Chemical and Nuclear Engineering, Universidad Politécnica de Valencia, Valencia, Spain

The most successful nanofiltration models are those based on the combination of the Extended Nernst-Planck equation with the Donnan steric equilibrium. These models have been typically solved by using iterative procedures based on the Runge-Kutta method. Yet, such procedures present convergence problems in some cases. In this paper, we present an implementation of the original Donnan ...

Simulation of Thermal Sensor for Thermal Control of a Satellite using COMSOL

G. Mangalgiri
BITS Pilani
Zuarinagar, Goa

Spacecrafts have a prime necessity that their temperature be controlled. This paper presents the simulation of a mechanically actuated field effect transistor that is used in a thermal system. It comprises of a composite beam, a piezoelectric substrate and a field effect transistor. The temperature rise causes a deflection in the composite beam thereby causing it to impinge on the piezoelectric ...

Dynamic Observation of Magnetic Particles in Continuous Flow Devices by Tunneling Magnetoresistance Sensors

A. Weddemann[1], A. Auge[1], F. Wittbracht[1], C. Albon[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

Dynamic measurement of magnetic particles in continuous flow devices is made very difficult by the limitations imposed by the sensors themselves. Thus, certain sensor layouts are restricted to either number sensitive or spatial resolutive measurements of magnetic particles. We investigate different new strategies to increase the detection threshold and introduce designs accomplishing both: ...

Control of Rolling Direction for Released Strained Wrinkled Nanomembrane

P. Cendula[1], S. Kiravittaya[1], J. Gabel[1], and O.G. Schmidt[1]

[1]Institute for Integrative Nanosciences, Dresden, Germany

Strained wrinkled and flat nanomembranes have different bending properties when they are released from the underlying substrate. This is caused by increased bending rigidity of the wrinkled film in one direction. We provide theoretical and numerical analysis of the directional rolling of wrinkled films, which is important for positioning rolled-up tubes on the short mesa edge during fabrication.

Quick Search