Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Parametric Study of Polyimide - Lead Zirconate Titanate Thin Film Cantilevers for Transducer Applications

A. Arevalo[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia

The simulation of the piezoelectric actuation of the micro-cantilever is presented. Lead Zirconate Titanate (PZT) was chosen for the device fabrication design, due to its thin film processing flexibility. Four layers compose the cantilever structures presented in this work: PZT (piezoelectric material), Platinum (electrodes) and Zirconium Oxide as the buffer layer for the PZT film and polyimide ...

Design and Simulation of 3D MEMS Piezoelectric Gyroscope using COMSOL Multiphysics®

T.Madhuranath[1], R.Praharsha[1], Dr.K.Srinivasa Rao[1]
[1]Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India

MEMS is the leading technology which combines both electronic and mechanical devices on a single microchip. Tracing the position of the object is an important problem in engineering. This can be addressed by Gyroscopes. These sensors are used to find orientation and angular velocity. This paper focuses on 3D MEMS Piezoelectric Gyroscope. COMSOL Multiphysics® is used for designing and ...

Sensitivity Optimization of Microfluidic Capacitance Sensors

S. Satti[1], M. Baghini[1]
[1]Indian Institute of Technology Bombay, Mumbai, Maharashtra, India

As a part of a lab-on-chip-device, more often it is required to measure dielectric constant of the fluid. For this purpose it is necessary to develop a sensor whose size is compatible with microfluidic channel. The work, presented in this paper, studies effect of the parameters influencing sensitivity of such a sensor and ultimately optimizes these dimensions to maximize the sensitivity. We ...

VLSI Layout Based Design Optimization of a Piezoresistive MEMS Pressure Sensors using COMSOL Multiphysics

R. Komaragiri[1], Sarath. S.[1], N. Kattabomman[1]
[1]NIT Calicut, Kozhikode, Kerala

This paper focuses on the diaphragm design and optimization of a piezoresistive Micro Electro Mechanical System (MEMS) pressure sensor by considering Very Large Scale Integration (VLSI) layout schemes. The aim of these studies is to find an optimal diaphragm shape by Finite Element Method (FEM) using COMSOL®, which is most suitable for VLSI layout. Optimal diaphragm shape is a diaphragm shape ...

Modeling Drug Release from Materials Based on Electrospun Nanofibers

P. Nakielski[1], T. Kowalczyk[1], T.A. Kowalewski[1]
[1]Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland

Comprehensive studies of drug transport in nanofibres based mats have been performed to predict drug release kinetics. The paper presents our approach to analyze the impact of fibers arrangement, one of the parameters varied in our parallel experimental studies. COMSOL Multiphysics® has been used to assess the impact of the various purposed arrangements of fibers within the mat. Drug release ...

Electrohydrodynamic Micropump Modeling for Performance Optimization

A. Mulye[1], S. Potnis[2]
[1]Northeastern University, Boston, MA, USA
[2]VIT, Mumbai, Maharashtra, India

We present an optimized and efficient design of an electrohydrodynamic (EHD) micropump for high performance in microscale and biological applications. We are targeting two major applications, a parylene C design for electrically-actuated medicine delivery, and a silicon-based pump design for on-chip cooling of microprocessors and SOCs. The EHD micropump works on the movement of microscale ...

Modeling and Simulation of Silicon Optical MEMS Switches Controlled by Electrostatic Field

J. Golebiowski[1], S. Milcarz[1]
[1]Technical University of Lodz, Poland

The use of optical sensors in the industry is still growing. A transmission of signal from the sensors is mostly done by optical fibers. Switching the signals from optical paths may be done by using micromechanical silicon switches. The main advantage is an ability to transmit data from many sensors using different wavelengths, simultaneously minimizing optical power losses. A silicon beam with ...

Simulation of Cantilever Based Sensors for Smart Textile Applications

S. Mano[1], S. Sowmya[1], Jaisree Meenaa Pria K N J[1], M. N. Sundaram[1], C. D. Koman[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

Smart fabrics enable the integration of electronics into fabric. They can serve as a suitable sensor providing around-the-clock assistance for the real-time monitoring of health parameters. Here, we aim to develop a free-standing piezoelectric cantilever sensor integrated into conventional fabric to improve its functionality. These smart sensors have the ability to convert physiological ...

Simulation of a One-Port SAW Resonator using COMSOL Multiphysics

R. Krishnan, H.B. Nemade, and R. Paily
Indian Institute of Technology, Guwahati

In this paper, we discuss simulation of one-port Surface Acoustic Wave (SAW) resonators using COMSOL Multiphysics. Resonator action can be achieved in one of the two ways; a single Inter-digital Transducer (IDT) having several fingers over a piezoelectric substrate or a short IDT with reflecting gratings at the ends of the IDT. We have modeled a Rayleigh wave type SAW device choosing YZ ...

Design and Analysis of 3D Capacitive Accelerometer for Automotive Applications

G. Vijila, S. Vijayakumar, M. Alagappan, and A. Gupta
PSG College of Technology
Coimbatore
Tamil Nadu, India

This paper projects a novel 3D capacitive accelerometer design to identify a severe accident and initiate airbag deployment systems. It will detect the rapid negative acceleration of the vehicle to avoid the severity of the collision. Such a device demands excellent performance in terms of sensitivity, noise immunity, linearity, bias and scale factor stability over time and environmental changes. ...

Quick Search