Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Some Commonly Neglected Issues Which Affect DEP Applications

G. Zhang[1], V. Pandian[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

Dielectrophoresis (or DEP) has been exploited for various micro and nano fluidics applications like patterning, sorting and separation. However, there are several commonly neglected issues in quantifying DEP forces. Such negligence could potentially lead to wrong DEP force predictions and estimates, posing difficulties in correlating experimental observations with theories. Among the commonly ...

Effects of Flow and Diffusion on Blood Coagulation in Platelet Poor Plasma: a Two-way Coupling Between Hemodynamics and Biochemistry

D. Magnabosco[1,2], H. van Ooijen[2], B. Bakker[2], R. van den Ham[2]
[1]Politecnico di Milano, Milan, Italy
[2]Philips Research, Eindhoven, The Netherlands

Enzyme reactions, blood flow and diffusion in human vasculature play interacting and fundamental roles in blood coagulation. In this complex mechanism, the balance between blood and clot is a delicate equilibrium, whose tight regulation is vital to avoid pathologies such as bleeding and thrombosis. The secondary hemostasis triggered by tissue factor in platelet poor plasma is studied up to fibrin ...

Simulation of Transdermal Toxin Expulsion via Adsorptive Dermal Patch using COMSOL Multiphysics®

H. Kwon[1], M. Hess II[1], R. M. Polski
[1]Andrews University, Berrien Springs, MI, USA

Mathematical skin models play an important role in fields such as transdermal drug delivery and assessment of dermal exposure to industrial chemicals. Extensive research has been conducted on modeling skin for transdermal drug delivery; however, little effort has been made to view the skin as a permeable layer to expel waste chemicals or toxins from the body. In this work, we focused on topical ...

Actively Controlled Ionic Current Gating In Nanopores

G. Zhang[1], S. Bearden[1]
[1]Clemson University, Clemson, SC, USA

It is necessary to understand and control nanopore behavior in order to develop biosensors for a variety of applications including DNA sequencing. The fluidics of nanopore devices we fabricated exhibits a range of interesting phenomena, such as enhanced conductance and current rectification. By electrically biasing nanopores, we were able to actively control the nanopore conductance in real time ...

Modeling Deep-Bed Grain Drying Using COMSOL Multiphysics®

J.G. Pieters[1], R. ElGamal[1], F. Ronsse[1]
[1]Faculty of Bioscience Engineering, Department of Biosystems Engineering, Ghent, Belgium

CFD simulations were carried out to predict the convective heat and mass transfer coefficients in the rice bed, and correlations were developed for the convective heat and mass transfer coefficients as a function of drying air flow rate. The developed correlations were used to extend the model developed by ElGamal et al. (2013) for thin-layer rice drying to volumetric heat and mass transfer in a ...

Determination of Mechanic Resistance of Osseous Element Through Finite Element Modeling

E. Isaza[1], E. Salazar[1], L. Florez[1]
[1]Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

The consequences of hip fracture and femoral fracture are widely known. The mechanical strength of the femur varies in every person, but it is possible to predict the mechanical resistance with parameters like density, dimensions and mineral content. This paper uses different models and empirical studies to determine the mechanical properties of the human femur, developing isotropic and ...

Studies of Lead Free Piezo-Electric Materials Based Ultrasonic MEMS Model for Bio sensor

P. Pattanaik[1], S. K. Kamilla[1], D. P. Das[2], S. K. Pradhan[3]
[1]MEMS Design Center, Institute of Technical Education & Research (ITER), Sikhya ‘O’ Anushandhan University, Bhubaneswar, Odisha, India
[2]Process Engineering and Instrumentation Lab, Institute of Minerals and Materials Technology (IMMT), Bhubaneswar, Odisha, India
[3]Dept of ECE, Hi-Tech Institute of Technology, Khurda, Odisha, India

This paper describes the design of an ultrasonic transducer using different lead free piezo-electric materials and evaluates their performance with different glucose levels in the human blood. COMSOL Multiphysics 4.2a was used for the simulation study using 2D axis symmetric model of piezoelectric transducer which was designed with lead free piezoelectric materials such as Barium Sodium Niobate ...

A Finite Element Model of Shear Wave Propagation Induced by an Acoustic Radiation Force Impulse

R. De Luca[1,2], J. Fromageau[1], H.W. Chan[1], F. Marinozzi[2], J. Bamber[1]
[1]Institute of Cancer Research and Royal Marsden Hospital, Sutton, England, United Kingdom
[2]Sapienza University of Rome, Dept. of Mechanical and Aerospace Engineering, Rome, Italy

Shear wave elastography is an innovative technique used in combination with the traditional ultrasound imaging to improve the specificity of cancer imaging. A two-dimensional finite element model (FEM), composed of realistic boundary conditions, was developed in COMSOL Multiphysics® to simulate the propagation of shear waves induced by an acoustic radiation force impulse (ARFI) in isotropic, ...

Modeling Drug Release from Materials Based on Electrospun Nanofibers

P. Nakielski[1], T. Kowalczyk[1], T.A. Kowalewski[1]
[1]Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland

Comprehensive studies of drug transport in nanofibres based mats have been performed to predict drug release kinetics. The paper presents our approach to analyze the impact of fibers arrangement, one of the parameters varied in our parallel experimental studies. COMSOL Multiphysics® has been used to assess the impact of the various purposed arrangements of fibers within the mat. Drug release ...

Elucidating the Mechanism Governing the Cell Rotation Behavior Under DEP

G. Zhang[1], Y. Zhao[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

In our experiments with manipulating cells with DEP, we noted that some cells are constantly spining. By hypothesing that the cell spining is caused by the non-circular shape of the cell body and the off-centered location of its nucleus and that the rotation direction depends on the relative location of nucleus with respect to the electrical field, we found that the observed cell rotation was ...

Quick Search