Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Modeling Drug Release from Materials Based on Electrospun Nanofibers

P. Nakielski[1], T. Kowalczyk[1], T.A. Kowalewski[1]
[1]Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland

Comprehensive studies of drug transport in nanofibres based mats have been performed to predict drug release kinetics. The paper presents our approach to analyze the impact of fibers arrangement, one of the parameters varied in our parallel experimental studies. COMSOL Multiphysics® has been used to assess the impact of the various purposed arrangements of fibers within the mat. Drug release ...

Effect of Electrical Field Distortion on Particle-Particle Interaction Under DEP

G. Zhang[1], Y. Zhao[1], J. Hodge[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

In using DEP for particle manipulation, researchers often use a formula to calculate the DEP forces in which the forces are proportional to the particle radius to the third power. This formula assumes that the electrical field, E, will not be affected by the presence of a particle, no matter what the actual size and the dielectric property of the particle are. This work confirms that the ...

Determination of Mechanic Resistance of Osseous Element Through Finite Element Modeling

E. Isaza[1], E. Salazar[1], L. Florez[1]
[1]Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

The consequences of hip fracture and femoral fracture are widely known. The mechanical strength of the femur varies in every person, but it is possible to predict the mechanical resistance with parameters like density, dimensions and mineral content. This paper uses different models and empirical studies to determine the mechanical properties of the human femur, developing isotropic and ...

Acoustic Field Comparison of High Intensity Focused Ultrasound Using Experimental Characterization and Finite Element Simulation

J. L. Teja[1], A. Vera[1], L. Leija[1]
[1]Department of Electrical Engineering, Cinvestav-IPN, Mexico D.F., Mexico

High Intensity Focused Ultrasound (HIFU) is used as a noninvasive technique of tissue heating and ablation for different medical treatments. This paper presents a quantitative comparison of HIFU acoustic fields experimentally obtained versus simulated acoustic fields. Acoustic field characterization was realized in two HIFU transducers using water as a propagation medium. Also, simulations were ...

Modeling 3D Calcium Waves from Stochastic Calcium Sparks in a Sarcomere Using COMSOL Multiphysics®

L. T. Izu[1], Z. Coulibaly[2], B. Peercy[2]
[1]University of California-Davis, Davis, CA, USA
[2]University of Maryland, Catonsville, MD, USA

This paper utilizes the COMSOL Multiphysics® general form PDE interface and MATLAB® to model stochastic calcium waves in a sarcomere (basic unit of a heart cell). The model we present here shows the evolution of waves generated from calcium being released stochastically from sites modeled as point sources. The release sites are distributed on z-disc (planes) in a hexagonal pattern, and their ...

Application of the Focused Impedance Method (FIM) to Determine the Volume of an Object within a Volume Conductor

M. A. Kadir[1], S. P. Ahmed[2], G. D. Al Quaderi[3], R. Rahman[2], K. Siddique-e Rabbani[1]
[1]Department of Biomedical Physics & Technology, University of Dhaka, Dhaka, Bangladesh
[2]Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh
[3]Department of Physics, University of Dhaka, Dhaka, Bangladesh

Focused Impedance Method (FIM), a new technique of electrical impedance measurement having high sensitivity in the central region, can sense the change in transfer impedance of an object embedded at a shallow depth within a volume conductor of unchanging background conductivity, using electrodes at the surface. This paper presents a new method for measuring the volume of such an embedded object ...

Electrical Characterization of Biological Cells on Porous Substrate Using COMSOL Multiphysics®

D. Mondal[1], C. RoyChaudhuri[1]
[1]Department of Electronics and Telecommunication Engineering, Bengal Engineering and Science University, Howrah, West Bengal, India

In this paper, the gross electrical characterization of biological cells on porous substrate is analyzed using COMSOL Multiphysics®. Dynamic electrical characterization during cell growth is used as a non-invasive and label-free technique to understand the growth kinetics of cells. It is observed from the COMSOL simulation that the percentage change in the current density is greater in porous ...

Electrohydrodynamic Micropump Modeling for Performance Optimization

A. Mulye[1], S. Potnis[2]
[1]Northeastern University, Boston, MA, USA
[2]VIT, Mumbai, Maharashtra, India

We present an optimized and efficient design of an electrohydrodynamic (EHD) micropump for high performance in microscale and biological applications. We are targeting two major applications, a parylene C design for electrically-actuated medicine delivery, and a silicon-based pump design for on-chip cooling of microprocessors and SOCs. The EHD micropump works on the movement of microscale ...

Simulating Organogenesis in COMSOL Multiphysics®: Parameter Optimization for PDE-based Models

D. Iber[1], D. Menshykau[2], P. Germann[2], L. Lermuzeaux[2,3]
[1]D-BSSE, ETH Zurich, Switzerland, SIB, Basel, Switzerland
[2]D-BSSE, ETH Zurich, Basel, Switzerland
[3]Department of Bioengineering, University of Nice-Sophia Antipolis, Nice, France

Morphogenesis is a tightly regulated process that has been studied for decades. Previously we developed data-based mechanistic models for a range of developmental processes with a view to integrate the available knowledge and to better understand the underlying regulatory logic. In our previous papers on simulating organogenesis in COMSOL Multiphysics® we discussed methods to efficiently solve ...

A Comparison Between an A-V and V Formulation in Transcranial Magnetic Stimulation

B. Granula[1], K. Porzig[2], H. Toepfer[2], M. Gacanovic[1]
[1]University of Banja Luka, Banja Luka, Bosnia-Herzegovina
[2]Technische Universität Ilmenau, Ilmenau, Germany

The prediction of the exact location and intensity of the electric field induced in the human brain during Transcranial magnetic stimulation is a nontrivial computational task. Numerical simulations of the procedure can be used to acquire first approximations in a safe and controlled environment. In order to make this approach more accessible, it is necessary to reduce computation time as much as ...

Quick Search