Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

State of Charge (SOC) Governed Fast Charging Method for Lithium Based Batteries

F. Naznin[1]
[1]TVS Motor Company Ltd., Hosur, Tamil Nadu, India

The proposed State of Charge (SOC) governed fast charging method for secondary lithium based batteries charges a battery many times faster than the normal Constant Current-Constant Voltage (CC-CV) charging and reduces the side-effects generally accompanied by various fast charging methods. The proposed charging algorithm takes into account the varying internal impedance of the battery at ...

Simulation of Cyclic Voltammetry of Ferrocyanide/Ferricyanide Redox Reaction in the EQCM Sensor

H. Kwon, and E. Akyiano
Dept. of Engineering and Computer Science
Andrews University
Berrien Springs, MI

In this paper, the cyclic voltammetry behavior of Ferrocyanide/Ferricyanide, which is commonly used for electrochemical DNA detection experiment, was studied in the commercial EQCM-D setup (Q-sense) using the COMSOL Multiphysics. The model was established in a 3D geometry of QCM liquid cell. The simulation shows depletion of concentration of ferrocyanice following applied electrode potential. ...

Simulation of Current Density for Electroplating on Silicon Using a Hull Cell

F. Lima[1], U. Mescheder[1], H. Reinecke[3]
[1]Hochschule Furtwangen University, Furtwangen, Baden-Wuerttemberg, Germany
[3]Institut für Mikrosystemtechnik, Freiburg im Breisgau, Baden-Wuerttemberg, Germany

Electrodeposition has a major advantage over other methods of thin film deposition. It allows deposition at atmospheric pressure and room temperature, requiring inexpensive equipment. However, there are several parameters which can influence an electroplated metal layer quality. The current density distribution is taken into consideration. The Hull cell is an electrodeposition tank with a ...

Simulation of Production Processes using the Multiphysics Approach: The Electrochemical Machining Process

R. van Tijum
Dr.
Advanced Technology Center, Philips Consumer Lifestyle, Drachten, The Netherlands

Redmer van Tijum studied Applied Physics at the University of Groningen. In 2006, he received his PhD title on ‘Interface and surface roughness of polymer metal laminates’ in the field of Material Science at the University of Groningen. After that he became research and development engineer at Philips, where he focussed his attention on the improvement of production processes mainly ...

Comparison of Darcy's Law, the Brinkman Equation, the Modified Navier-Stokes Equation and the Pure Diffusion Equation in PEM Fuel Cell Modeling

Z. Shi and X. Wang
Oakland University, Rochester, MI, USA

A two dimensional isothermal single phase PEM fuel cell model is developed and implemented in COMSOL Multiphysics, where Darcy's law, the Brinkman equation, the modified Navier-Stokes equation, and the pure diffusion equation are applied separately in porous electrodes. Three values of GDL permeability are investigated. Additionally, the order of the magnitude of each term in the modified N-S ...

The Effect of Electrolyte Flow Slots in Tooling Electrodes on Workpiece Surface Finish in Electrochemical Machining

B. Bingham[1]
[1]Oregon State University, Corvallis, OR, USA

Electrochemical machining (ECM) uses electrolysis to precisely remove material at high rates. ECM has many advantages over conventional machining: no tool wear, no induced mechanical or thermal stresses, high removal rates virtually independent of material hardness or strength, and excellent surface finishes. However, challenges can arise during the design of the tooling electrode when ...

Mathematical Modeling of a Lithium Ion Battery

R. E. White[1], and Long Cai[2]
[1]R.E. White & Associates LLC, Columbia, South Carolina, USA
[2]Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA

The existing lithium ion battery model in COMSOL’s Multiphysics  software is extended to include the thermal effects. The thermal behavior of a lithium ion battery is studied during the galvanostatic discharge process with and without a pulse. The existing lithium ion battery model in COMSOL 3.5a is extended by adding an energy balance and the temperature dependence of properties of ...

Electrical Behaviour of a Li-ion Polymer Battery

P. Alamar[1], J. Esarte[1]
[1]Fundación CETENA, Navarra, Spain

With a view to estimating electrical characteristics of a Polymer Li-ion Battery during specific charge and discharge conditions, a COMSOL Multiphysics® model has been developed that accounts for electrochemical phenomena inside the device. Cell model has been created using the Li-Ion Battery interface, customizing material properties and electrochemical reactions. The electrochemical parameters ...

Modeling of Supercapacitor

G. Madabattula[1], S. K. Gupta[1]
[1]Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

Low cost high energy density batteries that can be charged and discharged rapidly are required in a number of applications. Tapping energy from renewal resources such as solar, wind and tide requires rapidly generated energy to be first stored and then used round the clock. Storing energy of a moving vehicle as it slows down and recovering it to accelerate the vehicle later can significantly ...

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores

H. White[1], L. Luo[1]
[1]Department of Chemistry, University of Utah, Salt Lake City, UT, USA

A characteristic feature of nanochannels is that surface properties (e.g., electrical charge) play a more significant role in the transport of fluid and electrolyte. Two oppositely directed flows (electroosmotic flow and pressure-driven flow) determine the flow profile at the nanopore orifice as well as electrolyte distribution. Once there are two electrolyte solutions with different ...

Quick Search

1 - 10 of 194 First | < Previous | Next > | Last