Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Numerical Study on Acoustic Field Generated by Dipole Sources in Noncircular Pipe

H. Zhang, W. Lin, and X. Wang
Chinese Academy of Sciences, Institute of Acoustics, Beijing, China

Acoustical well logging is an important technology for petroleum industry. Calibration and testing of tools in real wells is not feasible because the cost is high and the condition is not controllable. During manufacturing and maintaining, the logging tools are usually tested in a fluid filled circular pipe. The acoustic field in non-circular wells are calculated by using of the PDE mode of ...

Lösung eines gekoppelten Konvektions-Diffusions-Problems aus der Akustik

G. Bärwolff
TU Berlin, Inst.f.Math., Berlin

Zur effizienten Beschreibung akustischer Systeme werden oft sogenannte Netzwerkmodelle benutzt. Hierbei wird das Gesamtsystem in einzelne (einfache) Elemente zerteilt, die dann jeweils durch ihr eigenes Übertragungsverhalten charakterisiert sind. Besonders einfach lässt sich dieses Übertragungsverhalten darstellen, wenn zwischen den Elementen nur ebene Wellen ausbreitungsfähig sind.1 In ...

Electro-acoustic Coupling in Nematic Liquid Crystals

G. Rosi[1], L. Teresi[1], A. DiCarlo[1], and F. dell'Isola[2]
[1]LaMS - Università degli Studi Roma Tre, Roma, Italy
[2]Università degli Studi di Roma "La Sapienza", Roma, Italy

Liquid crystals - as all liquids - are generally modelled as incompressible media. In fact, mass-density changes occurring in these mesophases are minuscule and inconsequential in most regimes of interest. However, liquid crystals exhibit also phenomena that call for a more refined theory. In particular, it is experimentally well established that the Fréedericksz transition - i.e., the sudden ...

PCCP Profiling and Tube Wave Analysis of WRE Signal

N. Chowdhury[1], Z. Liao[2], and L. Zhao[1]
[1]Department of Electrical & Computer Engineering, Ryerson University, Toronto, ON, Canada
[2]Department of Architectural Science, Ryerson University, Toronto, ON, Canada

Acoustic wave propagation due to the breakage or slippage of reinforced wire in water-filled prestressed concrete cylinder pipe (PCCP) attracts interest in non-destructive pipe testing. Current practice of acoustic emission (AE) detection and wire-break related events (WRE) recognition is based on field data analysis. This work deals with the theoretical investigation of WRE signal from ...

Transient Heat Transfer Effects from a Flapping Wing

Lind, R.J., Abedian, B.
Department of Mechanical Engineering Tufts University, Medford, Massachusetts

This presentation is a numerical study of fluid flow around a two-dimensional rigid flapping plate and its effects on the resultant transient heat transfer effects on the solid interface. In this study, a flat inflexible thin plate surrounded by air undergoes sinusoidal angular motion from one end while the other end is kept stationary, simulating a flapping motion. The two-dimensional ...

Using COMSOL to Support a Cost-Effective, Non-Destructive Evaluation Approach for Predicting Bolt Failure in Highway Bridges

A. Elyea, B. Doubek, G. Hubbard, and D. Ozevin
Department of Civil Engineering
University of Illinois at Chicago
Chicago, IL

The development of a quantitative nondestructive evaluation method, as an alternative to visual inspection, for inspecting pre-tensioned bolts in fracture critical bridges is presented. In order to understand the ultrasonic behavior of a wide variety of bolt geometries used in bridges, numerical models of nine different bolt geometries were developed. The numerical models included the ...

Towards a Finite Element Calculation of Acoustical Amplitudes in HID Lamps

B. Baumann[1], M. Wolff[1], J. Hirsch[2], P. Antonis[2], S. Bhosle[3], and R. Valdivia Barrientos[4]
[1]Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Eindhoven, The Netherlands
[3]LAPLACE, Université de Toulouse and CNRS, Toulouse, France
[4]National Institute of Nuclear Research, Salazar, Ocoyoacac, Mexico

High intensity discharge lamps can experience flickering and even destruction, when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp’s are tube. Here, a finite element approach for the calculation of the acoustic response function is described. The developed model does not include the plasma dynamics.

Analysis of Sound Propagation in Lined Ducts by Means of a Finite Element Model

D. Borelli[1] and C. Schenone[1]
[1]DIPTEM, University of Genova, Genova, Italy

The present paper describes the results of a Finite Element Model used to analyze sound propagation in lined ducts. By means of a numerical model it was possible to predict the insertion loss inside rectangular lined ducts in a frequency range from 250 Hz to 4000 Hz. The model was validated by a comparison with experimental data obtained in accordance to ISO 11691 and ISO 7235 standards. The ...

Application of COMSOL to Acoustic Imaging

K. Mcilhany, and J.C Hernandez
U.S. Naval Academy, Annapolis, MD, USA

Acoustic Imaging of hand movement is being studied with COMSOL and Matlab. A hardware implementation is being pursued that will be an array of 16x16 ultra-sonic speakers placed in a grid facing a similar grid of 16x16 microphones, operating at 40kHz. COMSOL is used to repeatedly calculate the diffraction pattern from a small scattering center, approximately 1.0cm in diameter. In conjunction ...

Effects Of The Microstructure Of Fibrous Media On Their Acoustic Properties

C. Peyrega, and D. Jeulin
Center of Mathematical Morphology, Mines ParisTech, Fontainebleau, France

This study is a part of the Silent Wall ANR project, to which the Center of Mathematical Morphology is associated. Its main objective is to build an acoustical and thermal insulating system for buildings, composed of fibrous materials. The material is composed of two phases: the fibrous network and the air surrounding it. At the microscopic scale the absorption of the acoustic wave is mainly due ...

Quick Search