Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Inductive Conductivity Measurement of Seawater

R. W. Pryor[1]
[1]Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The conductivity of seawater directly correlates with the concentration of dissolved salts. This model demonstrates a new approach to the methodology of inductive conductivity measurement of seawater and other liquids. COMSOL Multiphysics® was used to build a parametrically swept model of an O-Core Inductive Conductivity Measurement Sensor for Seawater. This sensor model is built using the ...

The Fast Model for Ionic Wind Simulation

A. Samusenko[1], Yu. Stishkov[1], P. Zhidkova[1]
[1]Saint Petersburg State University, Research and Educational Center “Electrophysics”, St Petersburg, Russia

Ionic wind is the gas flow induced by the corona discharge. Ions produced by corona are accelerated by electric field and transfer their momentum to neutral molecules. Using ionic wind one can convert electric energy to kinetic energy of air flow almost directly. The phenomenon of ionic wind finds applications in electrostatic precipitators and ionizers. It is difficult to solve the complete ...

Adaptive Numerical Simulation of Streamer Propagation in Atmospheric Air

S. Singh[1], Y. Sedyuk[1], R. Summer[2]
[1]Chalmers University of Technology, High Voltage Engineering, Gothenburg, Sweden
[2]Schneider Electric, Regensburg, Germany

Simulations of streamer discharge was performed by utilizing a space adaptive numerical scheme based on logarithmic representation of mass conservation equations, which governs the transport of charge carriers. Implementation of a model, which describes the propagation of a streamer in air at atmospheric pressure is discussed. Results of numerical simulations of a nanosecond discharge are ...

Homogenization Approaches for Laminated Magnetic Cores Using the Example of Transient 3D Transformer Modeling

H. Neubert[1], J. Ziske[1], T. Heimpold[1], R. Disselnkötter[2]
[1]Technische Universität Dresden, Institute of Electromechanical and Electronic Design, Germany
[2]ABB AG, Corporate Research Center Germany, Ladenburg, Germany

A specific issue in transformer modeling using the finite element method is the consideration of electric sheets or other laminated core materials which are used to reduce eddy currents. It would be impractical to explicitly model a large number of sheets as this would lead to a large number of elements and hence to unacceptable computational costs. Homogenization procedures overcome this ...

Analyzing an Unexpected Neutral Current in a Star-Star Transformer Under Steady State Condition

Aurabind Pal[1], Roma Dash[2], Anubhav Rath[3]
[1]Engineers India Limited, New Delhi; Summer Intern, Indian Institute of Technology Bombay,
Maharashtra, India
[2]IOCL,New Delhi; Intern, Indian Institute of Technology Bombay, Maharashtra, India
[3]3ETH Zurich, Switzerland

Finite element modeling of three phase three limbed transformer requires solving of field and circuit variables simultaneously. The accurate modeling thus obtained could predict asymmetry in magnetizing current of three phases due to asymmetry in core of three limbed transformer. This work includes circuit field coupling using COMSOL Multiphysics’ ACDC module. By proper modeling in SPICE it ...

Design Optimization of Printed Circuit Board Embedded Inductors through Genetic Algorithms with Verification by COMSOL Multiphysics®

M. Madsen[1], J. Mønster[1], A. Knott[1], M. Andersen[1]
[1]Technical University of Denmark, Lyngby, Denmark

This paper describes the implementation of a complete design tool for design, analysis, optimization and production of PCB embedded inductors. The paper shows how LiveLink™ for MATLAB® and COMSOL Multiphysics® make it possible to combine the scripting and calculation power of MATLAB with the simulation power of COMSOL Multiphysics in order to get an extremely efficient tool for inductor ...

Characterization of a 3D Photonic Crystal Structure Using Port and S-Parameter Analysis

M. Dong[1], M. Tomes[1], M. Eichenfield[2], M. Jarrahi[1], T. Carmon[1]
[1]University of Michigan, Ann Arbor, MI, USA
[2]Sandia National Laboratories, Albuquerque, NM, USA

We present a 3D port sweep method in a lossy silicon photonic crystal resonator to demonstrate the capabilities of COMSOL Multiphysics® for frequency domain analysis with input and output ports. This method benefits from the advantages of the S-parameter analysis to characterize the input and output coupling into the resonator. By pumping one end of the cavity with a CW plane wave, we are able ...

3D Power Inductor: Calculation of Iron Core Losses

L. Havez[1], E. Sarraute[1]
[1]LAPLACE, Toulouse, France

The work proposed in this paper deals with the consideration of 3D geometric effects to evaluate the iron losses in magnetic devices used in power electronics. To carry out this work, we rely upon two existing models of iron losses per unit volume calculation ("Steinmetz") currently used in power electronics. We coupled these two models with a finite element magnetic field calculation software, ...

Multiphysics Simulation of Thermoelectric Systems - Modeling of Peltier-Cooling and Thermoelectric Generation

M. Jaegle
Fraunhofer-Institute for Physical Measurement-Techniques (IPM), Freiburg, Germany

Electro-thermal interaction is commonly considered only as a matter of joule heating. In addition, the Seebeck-, Peltier- and Thompson-Effects are significant in materials with high thermoelectric figure of merit Z. These thermoelectric materials have a high Seebeck-coefficient α, a good electric conductivity σ, and a poor thermal conductivity λ. They have widespread areas of ...

Studying Crosstalk Trends for Signal Integrity on Interconnects using Finite Element Modeling

J. Grover[1], Dr. A. Gupta[1]
[1]Birla Institute of Technology and Science, Pilani-Pilani Campus,Rajasthan ,India

In high-speed digital design, strong electromagnetic coupling exists between adjacent transmission lines. This manifests itself in the form of crosstalk voltage induced on either line. Crosstalk is modeled in terms of capacitance and inductance matrices which are extracted using COMSOL Multiphysics®. Further, trends of crosstalk are observed with variations in dielectric constant of substrate, ...

Quick Search