Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Numerical Modeling of Dielectrophoretic Forces Acting upon Biological Cells in Silicon Lab-On-Chip Devices

S. Burgarella, M. Bianchessi, and M. De Fazio
Advanced System Technology, R&I e-Health, STMicroelectronics, Agrate Brianza, Italy

Dielectrophoresis (DEP) is a promising method for the automated separation of biological cells in a miniaturized format. This technology allows cells to be manipulated electronically while suspended in a microfluidic channel embedded in a silicon lab-on-chip. In this work, several dielectrophoretic configurations have been designed and fabricated using micro-electro-mechanical-systems (MEMS) ...

Design of Light Emitting Diodes (LED)

E. Baur, M. Sabathil, and N. Linder
Osram Opto Semiconductors GmbH, Regensburg, Germany

For a proper design shaping of light emitting diodes, the exact knowledge of the current distribution in the active area is essential. On the one hand, one has to achieve a uniform current density over the chip area, on the other hand, one has to avoid current crowding in the neighborhood of the electrical contacts. In this paper it is shown first how a LED can be modeled by COMSOL Multiphysics. ...

Numerical Simulation of the Electrical Double Layer Based on the Poisson-Boltzmann Models for AC Electroosmosis Flows

P. Pham1, M. Howorth1, A. Planat-Chrétien1, and S. Tardu2
1Département des microTechnologies pour la Biologie et la Santé, CEA/LETI, Grenoble, France
2LEGI, Grenoble, France

In this paper, the analytical validation of Poisson-Boltzmann (PB) equation computed with COMSOL Multiphysics in the case of a polarized surface in contact with an electrolyte, is first presented.COMSOL Multiphysics algorithms easily handle the highly nonlinear aspect of the PB equation. The limitations of the PB model, that considers ions as point like charges, are outlined. To account for the ...

Using COMSOL Multiphysics for the Modelling of a Hybrid Linear Stepper Motor

R. Wislati, and H. Haase,
Leibniz University of Hanover, Germany

In this paper a 2-phase hybrid linear stepper motor (HLSM), also known as Sawyer linear motor, has been considered as a potential approach in Variable Valve Actuation (VVA) Systems for Internal Combustion Engines. Initially, the reluctance network approach (RNA) with lumped parameters has been used assuming an infinite permeability of the steel core. The results have then been compared with a ...

Transient Heat Conduction in Semi-Infinite Solids Irradiated by a Moving Heat Source

N. Bianco1, O. Manca2, S. Nardini2, and S. Tamburrino2
1Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Università degli Studi Federico II, Napoli, Italia
2Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Università degli Studi di Napoli, Napoli, Italia

An analysis of the transient temperature distribution in a semi-infinite solid, irradiated by a moving Gaussian laser beam, is carried out numerically using COMSOL Multiphysics.Variable thermo-physical properties are accounted for. The workpiece is considered semi-infinite along the motion direction. Temperature distributions are evaluated both for different Peclet numbers and surface heat ...

Metal Surface Laser Texturing: Multiphysics Modeling of a Single Impact Effect

A. Soveja1,2, J. M. Jouvard1, and D. Grevey1
1Institut Carnot de Bourgogne, Bourgogne, France
2Faculté de Génie Mécanique, Université "Politehnica" Timisoara, Timisoara, Romania

During laser-matter interaction, a very small layer of molten material forms. The vapor plumes, formed by material vaporization, exercise an overpressure on the molten material. In a previous work, a 1D thermal model was carried out, but this model did not account for all physical phenomena during laser-matter interaction. For that, it is necessary to couple the thermal equations, the fluids ...

2D Magneto-Thermal Modeling of Coated High-Temperature Superconductors

F. Roy1, B. Dutoit1, F. Sirois2, and F. Grilli3
1École polytechnique fédérale de Lausanne, Lausanne, Switzerland
2Éole polytechnique de Montréal, Montréal, Canada
3F. Grilli, Los Alamos National Laboratory, Los Alamos, NM, USA

Thin films are very promising for the design of novel and an efficient Fault Current Limiter (FCL) made of high-temperature superconductors (HTS). However, before considering the use of these in a power grid, their thermal and highly non-linear electromagnetic behavior in the presence of over-critical currents needs to be investigated in detail.In this paper, we propose a numerical approach to ...

Numerical Simulation of the Filling Stage in the Polymer Injection Moulding Process

R. El Otmani1, M. Zinet1, M. Boutaous1, P. Chantrenne1, and H. Benhadid2
1CETHIL, Université Lyon, Villeurbanne, France
2Laboratoire de Mécanique des Fluides et d'Acoustique, Université Lyon, Ecully, France

During injection moulding of thermoplastic parts, high pressures, velocities and temperatures are experienced by the polymer in the filling phase. The numerical simulation of this phase is a complex task, especially for semi-crystalline polymers, because it involves a coupling between heat transfer, material structural transformation and crystallinity. The aim of this work is to present ...

On the Convergence Order of COMSOL Solutions

A. Bradji1, and E. Holzbecher2
1Charles University, Prague, Czech Republic
2Weierstrass Institute for Applied Analysis and Stochastics WIAS, Berlin, Germany

The convergence of numerical solutions is mainly determined by the convergence order, which quantifies the improvement of the solution when the mesh is refined. In this paper we examine various differential equations and the convergence behavior of their COMSOL Finite Element solutions. The numerically observed convergence rates are compared with theoretical results, as far as these are ...

A Material Model for Simulating Volume Changes during Phase Transformations

M. Tehler, and S. Jonsson
Materials Science and Engineering, Royal Institute of Technology, Stockholm, Sweden

The present work describes the first steps in creating a robust material model able to predict volume changes due to thermal expansion and phase transformations.A dilatometer test is simulated starting from room temperature, with an original microstructure constituting a mixture of ferrite and pearlite. During heating, the structure transforms to austenite, which upon quenching will transform ...

Quick Search

1 - 10 of 159 First | < Previous | Next > | Last