Artigos Técnicos e Apresentações

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Transient Heat Conduction in Solids Irradiated by a Moving Heat Source

N.Bianco, O.Manca, S. Nardini, and S. Tamburrino
Università degli Studi di Napoli, Italy

Transient three-dimensional temperature distribution in a solid, irradiated by a moving Gaussian laser beam, was investigated numerically by means of COMSOL Multiphysics. Convection and radiation from the work-piece surfaces as well as variable thermophysical properties are accounted for.

Silicon-on-Insulator MOS Optical Modulators

F. Dell’Olio, F. De Leonardis, and V.M.N. Passaro
Politecnico di Bari

One of the most important requirements of any integrated optical technology is the ability to perform optical modulation, which permits to encode a bit stream onto the optical carrier provided by the laser source. In this paper a multiphysics model for silicon modulators adopting a Metal Oxide Semiconductor (MOS) structure is presented.

A FEM Analysis of Transport Phenomena occurring during Vegetable Drying

S. Curcio
University of Calabria

The aim of the present work is the formulation of a theoretical model describing the transport phenomena involved in a food drying process by a convective oven. The proposed model represents a general and predictive tool capable of describing the real oven’s behavior over a wide range of process and fluid-dynamic conditions. The resulting system of non-linear unsteady-state partial ...

Low Frequency Analysis of Small Rooms by Means of a Finite Element Model

P. Bonfiglio, and A. Farnetani
Università degli Studi di Ferrara

The main object of this paper is the determination of the impulse response, in the low frequency range, for calculating the reverberation time and the energetic parameters in this space. An absorbing material is modelled by using the propagation of sound waves in an equivalent fluid. The results of this Finite Element model are compared with experimental measurements of impulse responses ...

Simulation and Analysis of Foods Fluid Dynamic Behaviour during Filling Processes

E. Bottani, R. Rizzo, and G. Vignali
Università degli Studi di Parma

This research presents a model describing the behavior of fluids during a septic filling processes. Numerical simulations were performed to investigate the laminar flow and rheological behavior of shear thinning and Newtonian fluids in 3-dimensional steady state and time-dependent configurations. The mass and momentum balance equations were solved with the finite element method using ...

2D Model of Floating Breakwater Dynamics under Linear and Nonlinear Waves

L. Martinelli[1], and P. Ruol[2]
[1] Università di Bologna
[2] IMAGE, Università di Padova

This paper describes an example of full fluid structure interaction. The 2D dynamics of a box-type pile-anchored floating breakwater is solved by means of two models using COMSOL Multiphysics . Simulated wave transmission and vertical displacements of the floating breakwater agree well with physical model results.

Numerical Simulation of the Heat Transfer and Elastic Dynamics of Nanodisk Arrays in Pump-Probe Laser Experiments

B. Revaz[1,2], C. Giannetti[2], F. Banfi[1], M. Montagnese[3], G. Ferrini[2], and F. Parmigiani[3,4]
[1] University of Geneva, Switzerland
[2] Università Cattolica del Sacro Cuore, Brescia
[3] Università degli Studi di Trieste
[4]Sincrotrone Trieste, I-34012 Basovizza, Trieste

We present in this paper, numerical simulations of the heat transfer and elastic dynamics of permalloy nanodisks on crystalline Si. The goal of this work is to simulate recent pump-probe laser experimental results obtained in our laboratory.

Simulation of Surface Stress Effect on Mechanical Behaviour of Silicon Microcantilever

A. Ricci, E. Giuri, and C. Ricciardi
LATEMAR, Italy

Microcantilevers made of crystal silicon are probably the most diffused type of MEMS because of their simple fabrication and their vast applications. In this presentation we treat the mechanical behaviour of silicon mirocantilevers, and also give an overview of the many application areas that these apply to.

Design of Electro-Optic Bragg Amplitude Modulators

A. Secchi[1], V. Foglietti[1], E. Cianci[1], L. Pierno[2], and M. Dispenza[2]
[1] CNR-IFN, Italy
[2] SELEX-SI, Italy

The subject of this work is the design of a LiNbO3 electro-optic tuned Bragg filter to be used as an amplitude modulator. We analyze in detail the realized waveguide and simulate the grating, developing a fabrication methodology for building the Bragg modulator by niobate core etching. Finally, we evaluate the performance of the modulator, using the finite element method analysis.

Fouling of Heat Exchangers in the Dairy Industry by Coupling Flow and Kinetics Modelling

M.V. De Bonis, and G. Ruocco
CFDfood, DITEC, Università degli studi della Basilicata, Potenza

The present work exploits modelling of a heat exchanger single channel during the pasteurization of milk. A 2D computation has been performed with COMSOL Multiphysics showing the potential application to optimized geometries and for a variety of products of known biochemical evolution.

Quick Search

1 - 10 of 34 First | < Previous | Next > | Last