Galeria de Modelos

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

Dipolar Microwave Plasma Source

This model presents a 2D axisymmetric dipolar microwave plasma source sustained through resonant heating of the electrons. This is known as electron cyclotron resonance (ECR), which occurs when a suitable high magnetic flux density is present along with the microwaves. This is an advanced model that showcases many of the features that make COMSOL unique, including: Infinite elements for the ...

Computing the Ion Energy Distribution Function

One of the most useful quantites of interest after solving a self-consistent plasma model is the ion energy distribution function (IEDF). The magnitude and shape of the IEDF depends on many of the discharge parameters; pressure, plasma potential, sheath width etc. At very low pressures the plasma sheath is said to be collisionless, meaning that the ion energy is not retarded by collisions with ...

In-Plane Microwave Plasma

Wave heated discharges may be very simple, where a plane wave is guided into a reactor using a waveguide, or very complicated as in the case with ECR (electron cyclotron resonance) reactors. In this example, a wave is launched into reactor and an Argon plasma is created. The wave is partially absorbed and reflected by the plasma which sustains the plasma.

Benchmark Model of a Capacitively Coupled Plasma

The underlying physics of a capacitively coupled plasma is rather complicated, even for rather simple geometric configurations and plasma chemistries. This model benchmarks the Capacitively Coupled Plasma physics interface against many different codes.

Surface Chemistry Tutorial

Surface chemistry is often the most important and most overlooked aspect of reacting flow modeling. Surface rate expressions can be hard to find or not even exist at all. Often it is preferable to use sticking coefficients to describe surface reactions because they can be estimated intuitively. The tutorial model simulates outgassing from a wafer during a chemical vapor deposition (CVD) ...

Argon Boltzmann Analysis

The electron energy distribution function (EEDF) plays an important role in the overall behavior of discharges. Analytic forms of the EEDF exist such as Maxwellian or Druyvesteyn, but in some cases they fail to fit the discharge physics. This tutorial model investigates the effects of various parameters on the electron energy distribution function and rate coefficients for an argon discharge. ...

Oxygen Boltzmann Analysis

The Boltzmann equation can be solved to validate sets of electron impact collision cross sections. In fact, sets of collision cross sections are traditionally inferred by solving a two-term approximation to the Boltzmann equation and comparing the results to swarm experiments. This model solves a two-term approximation to the Boltzmann equation and compares the computed drift velocity and ...

GEC CCP Reactor, Argon Chemistry, 1D

The NIST GEC CCP reactor provides a platform for studying capacitively coupled plasmas. Even the simplest plasma models are quite involved so a 1D example helps in understanding the physics without excessive CPU time. The problem has no steady-state solution, although a periodic steady-state solution is reached after a suitable number of RF cycles (usually >1000).

Harmonic Content of the Power Deposition into a Dual Frequency Capacitively Coupled Plasma

Energy transfer from the time varying electrostatic field to electrons in a capacitively coupled plasmas (CCP) does not exclusively occur at twice the RF frequency. Due to the highly nonlinear mechanism of power transfer from the fields to the electrons, power deposition occurs at frequencies higher than twice the driving frequency. For dual frequency CCP reactors the harmonic content of the ...

Model of an Atmospheric Pressure Corona Discharge

This model simulates a negative corona discharge occurring in between two co-axially fashioned conductors. The negative electric potential is applied to the inner conductor and the exterior conductor is grounded. The modeled discharge is simulated in argon at atmospheric pressure.

Quick Search