Galeria de Modelos

A Galeria de Modelos possui arquivos do COMSOL Multiphysics de várias áreas de aplicação incluindo elétrica, mecânica, escoamento e química. Você pode baixar modelos prontos e também tutoriais passo-a-passo para montar seu modelo, e usá-lo como ponto de partida para o seu próprio modelo. Use a função de busca "Quick Search" para encontrar modelos na sua área de interesse e faça o login ou o seu cadastro no COMSOL Access, cadastrando a sua licença do COMSOL, para poder baixar os arquivos.

Bracket Tutorial Models

These models are used for an introduction to structural mechanics modeling using the structural mechanics module. The following features are introduced: - The Fundamentals: A Static Linear Analysis - Parametric study - Including Initial Strain - Modeling Thermal Expansion - Adding Rigid Connector - Adding Spring Conditions - Modeling with the Shell Physics Interface - Transient Analysis - ...

Plastic Deformation During the Expansion of a Biomedical Stent

A stent is a wire-mesh tube used to open a coronary artery during angioplasty, a process for the removal or compression of plaque. Their design is of significance for percutaneous transluminal angioplasty with stenting. During this procedure, a stent is deployed into the blood vessel by means of a balloon. The expanded stent acts as a scaffold that keeps the blood vessel open. During this ...

Compression of an Elastoplastic Pipe

In offshore applications, it is sometimes necessary to quickly seal a pipe as part of the prevention of a blowout. This example shows a simulation, in which a circular pipe is squeezed between two flat stiff indenters. The model serves as an example of an analysis with very large plastic strains and contact.

Hyperelastic Seal

In this model you study the force-deflection relation of a car door seal made from a soft rubber material. The model uses a hyperelastic material model together with formulations that can account for the large deformations and contact conditions.

Viscoplastic Creep in Solder Joints

This example studies viscoplastic creep in solder joints under thermal loading using the Anand viscoplasticity model, which is suitable for large, isotropic, viscoplastic deformations in combination with small elastic deformations. The model geometry includes two electronic components (chips) mounted on a circuit board by means of several solder ball joints. Significant plastic flow clearly ...

Inflation of a Spherical Rubber Balloon

This model aims to investigate the inflation of a rubber balloon with different hyperelastic material models, and compare the results to analytical expressions. A controlled inflation could benefit clinical applications, cardiovascular research, and the medical device industry, thus the importance of understanding the hyperelastic behavior during balloon inflations. The example is taken from ...

Arterial Wall Mechanics

This model shows how to implement an anisotropic hyperelastic material for modeling collagenous soft tissue in arterial walls. The hyperelastic material model, called Holzapfel-Gasser-Ogden material, is based on the article: Holzapfel, G. A., Gasser, T. C., & Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of ...

Temperature-Dependent Plasticity in Pressure Vessel

This example demonstrates how to use temperature dependent materials within the Nonlinear Structural Materials Module. A large container holds pressurized hot water. Several pipes are attached to the pressure vessel. Those pipes can rapidly transfer cold water in case of an emergency cooling. The pressure vessel is made of carbon steel with an internal cladding of stainless steel. In case of a ...

Elastoplastic Analysis of Plate with a Center Hole

In this model you analyze a perforated plate loaded into the plastic regime. In addition to the original problem, which you can find in section 7.10 of The Finite Element Method by O.C. Zienkiewicz, you can also study the unloading of the plate. The model also shows how to apply an external hardening function based on an interpolated stress-strain curve.

Snap Hook

This model simulates the insertion of a snap hook in its groove. Fasteners like this are common in the automotive industry, for example, in the control panel of a car. In this case it is important to know the force that must be applied in order to place the hook in the slot but also the force needed to remove it. From a numerical point of view, this is a highly nonlinear structural analysis, ...

Quick Search

1 - 10 of 21 First | < Previous | Next > | Last